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Viscous flow computations are required to predict the heat flux or the viscous
drag on an hypersonic re-entry vehicle. When real gas effects are included, Navier–
Stokes computations are very expensive, whereas the use of standard boundary layer
approximations does not correctly account for the ‘entropy layer swallowing’ phe-
nomenon. The purpose of this paper is to present an extension of a new boundary
layer theory, called the ‘defect approach’, to two-dimensional hypersonic flows in-
cluding chemical and vibrational non-equilibrium phenomena. This method ensures
a smooth matching of the boundary layer with the inviscid solution in hypersonic
flows with strong entropy gradients. A new set of first-order boundary layer equa-
tions has been derived, using a defect formulation in the viscous region together
with a matched asymptotic expansions technique. These equations and the associated
transport coefficient models as well as thermochemical models have been imple-
mented. The prediction of the flow field around the blunt-cone wind tunnel model
ELECTRE with non-equilibrium free-stream conditions has been done by solving
first the inviscid flow equations and then the first-order defect boundary layer equa-
tions. The numerical simulations of the boundary layer flow were performed with
catalytic and non-catalytic conditions for the chemistry and the vibrational mode.
The comparison with Navier–Stokes computations shows good agreement. The wall
heat flux predictions are compared to experimental measurements carried out during
the MSTP campaign in the ONERA F4 wind tunnel facility. The defect approach
improves the skin friction prediction in comparison with a classical boundary layer
computation.

1. Introduction
For an inviscid hypersonic flow around a blunt body, under the assumption of

a perfect gas, the entropy remains constant along a streamline, except through the
bow shock wave, where the entropy jump depends on the local slope of the shock,
and thus varies from one streamline to another because of the shock curvature. In
the shock layer, an entropy gradient orthogonal to the streamline is thus created.
On the rear part of the body, the shock wave tends to be straight and the entropy
gradient disappears. The entropy gradient is thus confined to the vicinity of the
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Figure 1. Entropy layer on a hypersonic blunt body.

wall in a region called the ‘entropy layer’. This layer represents the streamlines
which crossed the curved shock wave near the nose. This entropy gradient is related
to the vorticity and to the total enthalpy Ht of the flow field through Crocco
equation:

(∇ ∧ V ) ∧ V = TgradS − gradHt.

So the streamwise component of the velocity varies through the entropy layer along
the normal to the body (figure 1). Since the total enthalpy is constant in the whole
flow, the temperature varies too. Therefore this strong shock wave induces an inviscid
vortical flow in the shock layer.

Moreover, during an hypersonic re-entry, part of the kinetic energy of the vehicle
is transmitted to the flow through the shock wave. As the stagnation enthalpy is
conserved, the hypervelocity flow upstream of the shock is transformed into an
hyperenthalpy flow downstream of the shock. In this high-enthalpy air flow around
the vehicle, the region between the body surface and the detached bow shock is
the site of intensive physico-chemical processes. The different internal energy modes
(translation, rotation, vibration) of the molecules are far from their equilibrium state;
transfers between different modes of energy storage are usually categorized according
to the relaxation time associated with each process. The transfer from directed
molecular kinetic energy to thermal random translational and rotational energies
takes place almost instantaneously through the shock wave, leading to a maximum of
the transrotational temperature just behind the shock. Downstream from the shock,
this high-temperature gas is in thermal and chemical non-equilibrium, thus the flow
relaxes. The return to equilibrium will take place via a redistribution of energy among
the internal modes of the molecules and the chemical reactions.

In this paper, only the chemical and vibrational non-equilibrium processes are taken
into account for the specific range of Mach numbers investigated. The vibrational
mode is thus supplied with energy, and the molecules dissociate. The vibration and
chemical relaxation processes proceed together. A reliable computational method for
hypersonic viscous flows must include the influence of the vortical inviscid flow on the
boundary layer and the real gas effects such as the chemical non-equilibrium and the
vibrational relaxation. While Navier–Stokes computations are generally found to be
too expensive for design tasks, especially when real gas models are involved, recently
some investigations have been made using classical boundary layer codes (see for
example Wüthrich & Sawley 1992). Indeed, for large enough Reynolds numbers, the
boundary layer is sufficiently small compared to the shock layer to assume that viscous
effects are negligible near the shock wave. One can then consider separate calculations
for the inviscid shock layer and the viscous boundary layer. Unfortunately, for many
hypersonic flows it is not possible to account correctly for the edge conditions
within the context of the classical boundary layer method. According to the classical
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Figure 2. Matching scheme at (a) first order, (b) second order.

boundary layer theory established by Prandtl using an order-of-magnitude analysis,
the variables at the edge of the boundary layer are matched with the inviscid
variables at the wall (figure 2a). This is valid for large Reynolds numbers and thus
very thin boundary layers. One can then neglect the evolution of the inviscid flow field
throughout the boundary layer. In hypersonic flows, due to the low density of the gas,
the Reynolds number is often moderate and the boundary layer thickness becomes
no longer negligible compared to the entropy layer thickness. The entropy layer may
even be completely ‘swallowed’ by the boundary layer on the rear part of the body. In
such a case, a correct matching cannot be obtained between the inviscid flow and the
boundary layer. For that reason Van Dyke (1962) extended this boundary layer theory,
using matched asymptotic expansions. This approach is valid when the boundary layer
is very thin. Therefore, Van Dyke’s second-order theory assumed that the inviscid
solution can be represented in the boundary layer by its Taylor expansion at the wall.
Consequently, this approach gives a correct matching between the viscous and inviscid
solutions only when the inviscid profiles are linear (figure 2b). Generally the entropy
layer is a region of non-constant vorticity, gradually covered by the boundary layer.
Hence, here again neither a correct matching of the viscous and inviscid solutions
nor a correct prediction of the influence of the external vorticity on the wall heat
flux or the skin friction can be achieved with Van Dyke’s approach. To remedy this
problem, a defect approach coupled with asymptotic expansions had been proposed
by Brazier, Aupoix, & Cousteix (1990), but only perfect gas flow had been considered
so far.

This paper presents an extension of this method in the context of hypersonic flows
to include real gas effects such as chemical and vibrational relaxation phenomena.
The matched asymptotic expansions approach is still used to derive the governing
equations since it is a very powerful tool. Only steady two-dimensional planar or
axisymmetric laminar compressible reactive flows will be addressed here. An example
of application concerns the non-equilibrium flow around the ELECTRE model located
in the test section of the contoured nozzle of the ONERA high-enthalpy wind tunnel
F4. The viscous flow field is studied numerically by solving the defect boundary layer
equations using a space marching technique. The influence of the various boundary
conditions used for the chemistry and for the vibrational process is clearly pointed
out. The results of a comparison with the viscous solution obtained using a full
Navier–Stokes code are also presented (see Zeitoun et al. 1995). Finally the wall heat
flux predictions are compared to experimental measurements and to others computed
results from Hachemin & Vérant (1995).
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2. Basic equations and closure relations
2.1. Air model

For the stagnation conditions considered, ionization is neglected. Downstream from
the shock wave, only dissociation and vibrational relaxation processes are taken into
account. Therefore, according to the expected pressure ranges, only atomic oxygen
and nitrogen will form, together with nitrogen monoxide. The dissociated air then can
be modelled by a mixture of five species, namely N2, O2, NO, N, O. The vibrational
relaxation time for nitrogen monoxide being very small in comparison with the flow
time scale, this molecule is assumed to be at thermal equilibrium. Thus only the
nitrogen and oxygen molecules are taken in vibrational non-equilibrium.

2.2. Flow governing equations and transport properties

The basic equation set is the Navier–Stokes equations together with relaxation equa-
tions for the chemical species and for the vibrational energies. For a steady flow these
equations are

continuity ∇· (ρV ) = 0,

momentum ∇V ⊗ ρV = −∇P + ∇ · τ ,
energy ρV · ∇h = V · ∇P + τ :∇V − ∇ · φ,

chemical relaxation ρV · ∇YI = ω̇I − ∇ ·QD
I ,

vibrational relaxation ρV · ∇
(
YJevib,J

)
= Ω̇J − ∇ ·

(
evib,JQ

D
J +Qvib,J

)
.

When the flow is in thermal equilibrium we consider only the first four equations. In
these equations, YI is the mass fraction of each species, the subscript I = 1, 2, ..., 5
represents the five species of the air mixture, ρ is the density of the mixture, V is
the velocity vector, h is the enthalpy per unit mass. P is the pressure of the mixture
determined from the Dalton law P =

∑
I PI , where PI is the partial pressure of the

I-species, assumed to behave as a perfect gas following the relation PI = ρI (R/MI )T
where MI is the mass per mole of the I-species, ρI = ρYI being the mass of I-species
per unit volume and R denotes the universal perfect gas constant. In the vibrational
relaxation equations, the subscript J = 1, 2 stands respectively for the N2 and O2

molecules in vibrational non-equilibrium. The viscous stress tensor τ under the Stokes
assumption is

τ = µ
(
∇V +t ∇V

)
− 2

3
µ (∇ · V ) 1.

The mass diffusion for the I-species reads

QD
I = ρYIV

D
I

with V D
I the diffusion velocity for the I-species. As a first step, diffusion fluxes are

approximated by the Fick law, with a single diffusion coefficient calculated assuming
a constant Lewis number. Therefore the diffusion flux is

QD
I = −ρD∇YI

This approximation avoids having to compute all the binary diffusion coefficients
involved in the general expression for the diffusion flux which stems from the ki-
netic theory of gases as given in Hirschfelder, Curtiss, & Bird (1954). The heat flux
expression is

φ = φtrans,rot + φvib + φchem
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with

φtrans,rot = −λtrans,rot∇T ,

φvib =
∑

k=molecules

Qvib,k,

whereh

Qvib,k = −λvib,k∇Tvib,k
is the vibrational heat flux of the I-species and

φchem =
∑
I

hIQ
D
vib,I .

φtrans,rot, φvib, φchem represent the energy fluxes due to the transport of transla-
tion/rotation energy, to the transport of vibration energy of the molecular species
and to the transport of the various species with their own enthalpy respectively.
The viscosity of pure species is given by the kinetic theory of gases in Hirschfelder
et al. (1954), and the Wilke approximate mixture rule is used (see Wilke 1950).
The translation/rotation thermal conductivity of a pure species is deduced from
its viscosity with the help of the Eucken relation. Here again the Wilke mixture
rule is used to compute the translation/rotation mixture conductivity. The viscosity
and the translation/rotation conductivity have been computed using the collision
integral method from Hirschfelder et al. (1954), with the Lennard–Jones potential.
The values of the potential wells and the collision diameters have been taken from
Glotz & Schönauer (1977). The collision integrals are computed with the help of the
Hattikudur & Thodos (1970) formula. The vibrational thermal conductivities of the
molecules are expressed in terms of the single diffusion coefficient as recommended
by Pascal & Brun (1993).

2.3. Chemical model

The chemical model to describe the gas dissociation consists of seventeen reactions
for the above five-species mixture. Each molecule may dissociate by collision with
any of the five species and nitrogen monoxide can be formed and destroyed by the
exchange reactions. The chemical reaction set is

dissociation reactions

N2 + M
 N + N + M,

O2 + M
 O + O + M,

NO + M
 N + O + M;

exchange reactions

NO + O
 N + O2,

O + N2 
 N + NO,

where M stands for any of the five species. The forward reaction rates Kf,r , for the rth

reaction, depend on the temperature and are computed from a modified Arrhenius
equation,

Kf,r = ArT
αr exp

(
−θr
T

)
where the constants Ar , αr and θr can be found in Gardiner (1984). The backward
reaction rates Kb,r are obtained from the equilibrium constant, given by classical
thermodynamic (see for example Barrère & Prudhomme 1973) and calculated from
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the thermodynamic variables of the mixture. If we use the general Penner notation
for the r-reaction ∑

I

ν ′I,rAI 

∑
I

ν ′′I,rAI

then the variation of the mole number nI = ρI/MI for the I-species due to the
chemical reactions is(

dnI
dt

)
chem

=

17∑
r=1

(
ν ′′I,r − ν ′I,r

)(
Kf,r

∏
J

n
ν ′
J,r

J −Kb,r

∏
J

n
ν ′′
J,r

J

)
and the mass production rate is

ω̇I = MI

(
dnI
dt

)
chem

.

2.4. Vibrational relaxation model

The production term which appears in the vibrational relaxation equation is a
combination of chemical production and vibrational relaxation rates

Ω̇J = evib,Jω̇J + ρYJω̇vib,J .

We consider only the vibrational energy exchanges that occur through V-T processes
i.e. energy exchanges between the translational and vibrational modes, as described
in Landau & Teller (1936). Following their results, the vibrational source term can
be written as

ω̇vib,J =
(
ω̇vib,J

)
V−T =

ēvib,J (T )− evib,J
(
Tvib,J

)
τVTJ

where evib,J
(
Tvib,J

)
is the actual vibrational energy and ēvib,J (T ) is the vibrational

energy of the molecule if it were in vibrational equilibrium with the translation
temperature T . The relaxation time τVTJ accounts for collisions with all possible
species of the mixture. Therefore, it is a mixture of the vibration relaxation time
scales τVTJI of species J by exchange with the translation energy of species I as

1

τVTJ
=
∑
I

γI

τVTJI

where γI is the mole fraction of species I given by

γI =
nI

n
= YI

M

MI

.

The various relaxation times are taken from experimental data and modelled as

τVTJI = αJI
T βJI

P
exp

(
γJIT

−1/3 − δJI
)
.

The vibrational relaxation times for N2 in O have been measured by Breshears &
Bird (1968). Kiefer & Lutz’s (1967) experimental data are used for the vibration times
for O2 in O. Both data sets have been numerically fitted by Thivet, Perrin & Candel
(1991). The vibrational relaxation times for O2 and N2 in N2 have been measured by
Blackman (1955) and fitted by Treanor & Marrone (1962). In the mixture considered,
oxygen and nitrogen atoms have similar masses and properties. Therefore, it is pro-
posed to extend the available data to the other collision partners by only considering
whether they are atoms or molecules.
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Figure 3. Coordinate system linked to the body surface.

2.5. Thermodynamic model

Only the three major modes, namely translation, rotation and vibration, are taken
into account when modelling the partition of internal energy in the various species.
Translational and rotational modes are always considered in full equilibrium and thus
are characterized by a single temperature T , while vibrational modes may depart from
equilibrium. Therefore each of the diatomic species N2 and O2 is assumed to have
a separate vibrational temperature distinct from the mixture temperature T . The
internal energy of each of the constituent species is calculated as the sum of the
contributions of the translational and rotational energy modes, the vibrational energy
modes and the heat of formation, i.e.

eI = etrans,I + erot,I + evib,I + h0
f,I

where h0
f,I is the formation enthalpy of the species I , etrans,I = 3

2
(RMI )T is the

translation energy of a species per unit mass, erot,I = (RMI )T is the rotation energy per
unit mass for a diatomic molecule. Under the assumption of an harmonic oscillator,
the vibrational energy of a diatomic molecule is

evib,I =
Rθvib,I

MI

(
exp

(
θvib,I/Tvib,I

)
− 1
) − NIRθvib,I

MI

(
exp

(
NIθvib,I/Tvib,I

)
− 1
)

where Tvib,I is the vibrational temperature of a molecule I , θvib,I its specific vibrational
temperature and NI the number of vibration levels of the molecule. Note that for
molecules in thermal equilibrium, T also represents the vibrational temperature.

The internal energy of the mixture per unit mass is given by e =
∑

I YIeI . For each
species the enthalpy is hI = eI + PI/ρI = eI + RT/MI and the mixture enthalpy per
unit mass is

h =
∑
I

YIhI = e+
P

ρ
.

3. Defect approach
3.1. Dimensionless variables

We consider a two-dimensional planar or axisymmetric flow, and we use a coordinate
system linked to the body surface, where ξ is the curvilinear abscissa along the body
and η is the distance along the wall normal (figure 3).

The metric coefficients are

h1 = 1 + η/R (ξ), h3 = (r (ξ) + η cos α (ξ))j

where R (ξ) and r (ξ) are respectively the longitudinal and transverse curvature radii,
α (ξ) the angle between the wall tangent and the symmetry axis, and j = 0 for planar
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body or j = 1 for axisymmetric body. The previous Navier–Stokes equations are
written in dimensionless form with reference to the upstream velocity U∞, upstream
density ρ∞, a reference length R0 such as the nose radius, a reference temperature
Tref = U2

∞/Cp,f and a reference viscosity µref .

3.2. Dimensionless numbers of the problem

A more convenient form of the heat flux, which will appear in the dimensionless form
of the Navier–Stokes equations, is

φ = − µ

P ′rRe

(
∇h+

(
L′e − 1

)∑
I

hI∇YI +
∑

j=N2 ,O2

(
Fvib,j − 1

)
Yj∇evib,j

)
with the following numbers defined as:

Reynolds number

Re =
ρ∞u∞Lref

µref
;

Prandtl number

P ′r =
µC ′p
λ′

;

where

λ′ = λtrans,rot + λvib,NO

with λtrans,rot the translation/conduction thermal conductivity, λvib,NO the vibration
thermal conductivity of NO and

C ′p = Cp,trans,rot + YNOCv,vibNO

with Cp,trans,rot the translation/rotation specific heat of the mixture and Cv,vibNO the
vibrational specific heat of NO which is assumed to be in thermal equilibrium;

Lewis number

L′e =
ρDC ′p
λ′

which represents the ratio of the parts of the heat flux due to the energy transport
by the diffusing gas mixture components and by heat conduction which depends on
the transrotational temperature;

vibrational numbers

Fvib,j =
ρC ′pλvib,j

ρYj Cv ,vibj
λ′
.

Under the assumption of Mason & Monchick (1962), λvib,j = ρYjDvibj ,mCv,vibj . Since
the Fick law is used with a single diffusion coefficient, and if we assimilate the
diffusion coefficient of the vibrational mode into this single diffusion coefficient, we
have Dvibj ,m = D and thus Fvib,j = L′e . Hence the wall heat flux expression can be
simplified to

φ = − µ

P ′rRe

(
∇h+

(
L′e − 1

)∑
I

hI∇YI +
(
L′e − 1

) ∑
j=N2 ,O2

Yj∇evib,j

)
.

The Schmidt number Sc = ν/D is the same in thermal non-equilibrium and at
equilibrium, since we have assumed that thermal non-equilibrium does not modify
the transport coefficients ν and D. Thus we can deduce a relation between L′e , and the
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Lewis number defined at thermal equilibrium Le = ρDCp,f /λeq , with λeq the thermal
conductivity of the mixture at thermal equilibrium, and Cp,f , the specific heat of
the frozen mixture at thermal equilibrium defined by Cp,f =

(
∂h/∂T

)
P ,YI ,Tvib,I=T

=∑
I YICp,I (T ). This relation is

Sc =
Pr

Le

=
P ′r
L′e

where Pr = µCp,f /λeq is the Prandtl number defined at thermal equilibrium. Thus we
obtain the following relation:

L′e = Le

C ′p
Cp,f

λeq

λ′

where the value of Le used in thermal equilibrium is taken constant and equal to 1.2.

3.3. Decomposition

According to the defect approach described in Aupoix, Brazier, & Cousteix (1992),
each variable w of the physical flow is split in two parts:

w = wE + wD with w = {u, p, ρ, h, T , . . .}.

The first part is labelled with the subscript E and represents the inviscid solution
which is a good approximation far from the wall. The second part, called the ‘defect
part’ and labelled with the subscript D, is the difference between the viscous solution
and the outer inviscid profile (figure 4) giving an approximation valid near the wall.
For the normal velocity we write

v = vE − vE(ξ, 0) + vD.

The term vE (ξ, 0) has been added to keep the condition vD (ξ, 0) = 0 at the wall
whatever the value of vE . The extension to reacting flows presented here, consists
in splitting the species mass fractions and the vibrational energy of N2 and O2

molecules, into external and defect parts, as well as the chemical production rates and
the vibrational production rates:

YI = YIE + YID,
Evib,J = Evib,J,E + Evib,J,D with Evib,J = YJevib,J ,
ω̇I = ω̇I,E + ω̇I,D,

Ω̇J = Ω̇J,E + Ω̇J,D.
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3.4. Asymptotic expansion

Two approximations of the Navier–Stokes equations are sought: one far from the
wall, in the region where the viscous effects are weak, and the other one near the wall,
where the viscous effects are important. Both solutions are defined over the whole
domain but are valid only in a restricted zone. These approximations are looked for
as expansions in powers of a small perturbation parameter:

ε = Re
−1/2.

The external functions depend on the coordinates (ξ, η). The outer expansions are

uE (ξ, η) = U1 (ξ, η) + εU2 (ξ, η) + · · · ,
vE (ξ, η) = V1 (ξ, η) + εV2 (ξ, η) + · · · ,
pE (ξ, η) = P1 (ξ, η) + εP2 (ξ, η) + · · · ,
ρE (ξ, η) = R1 (ξ, η) + εR2 (ξ, η) + · · · ,
hE (ξ, η) = H1 (ξ, η) + εH2 (ξ, η) + · · · ,
TE (ξ, η) = T1 (ξ, η) + εT2 (ξ, η) + · · · ,
YI,E (ξ, η) = YI,1 (ξ, η) + εYI,2 (ξ, η) + · · · ,
Evib,I,E (ξ, η) = Evib,I,1 (ξ, η) + εEvib,I,2 (ξ, η) + · · · ,
Tvib,I,E (ξ, η) = Tvib,I,1 (ξ, η) + εTvib,I,2 (ξ, η) + · · · .


(3.1)

In the inner region, a stretched normal coordinate η̄ = η/ε is used according to
the principle of least degeneracy (Van Dyke 1962, 1975). In this way, the normal
coordinate is referred to a quantity of the same order of magnitude as the boundary
layer thickness, so that the new normal coordinate is of order unity in the boundary
layer. Similarly, a special expansion must be written for the normal velocity because
this quantity is of order ε in the boundary layer, according to the continuity equation.
Therefore, the inner expansions have the form

uD (ξ, η) = u1 (ξ, η̄) + εu2 (ξ, η̄) + · · · ,
vD (ξ, η) = εv̄1 (ξ, η̄) + ε2v̄2 (ξ, η̄) + · · · ,
pD (ξ, η) = p1 (ξ, η̄) + εp2 (ξ, η̄) + · · · ,
ρD (ξ, η) = ρ1 (ξ, η̄) + ερ2 (ξ, η̄) + · · · ,
hD (ξ, η) = h1 (ξ, η̄) + εh2 (ξ, η̄) + · · · ,
TD (ξ, η) = t1 (ξ, η̄) + εt2 (ξ, η̄) + · · · ,
YI,D (ξ, η) = yI,1 (ξ, η̄) + εyI,2 (ξ, η̄) + · · · ,
Evib,I,D (ξ, η) = εvib,I,1 (ξ, η̄) + εεvib,I,2 (ξ, η̄) + · · · ,
Tvib,I,D (ξ, η) = tvib,I,1 (ξ, η̄) + εtvib,I,2 (ξ, η̄) + · · · .


(3.2)

All the coefficients and their derivatives are assumed to be of order unity. Special
attention has to be paid to the order-of-magnitude analysis of the external flow
quantities in the inner region. For example, the normal velocity component can be
expanded as

V1 (ξ, η)− V1 (ξ, 0) = εṼ 1 (ξ, η) .

3.5. First-order flow equations

In the outer region, the defect variables are null. The outer expansions are brought
into the Navier–Stokes equations, and terms of like powers of ε are equated. The
first-order equations for the outer flow are just the usual Euler equations, as in the
Van Dyke theory.

The derivation procedure for the inner-region equations is more complex. One must
first bring the above expansions (3.1) and (3.2) into the Navier–Stokes equations, then
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subtract the external equations, and finally equate the same powers of ε. For practical
convenience, the inner equations can then be rewritten in outer coordinates, using η
instead of η̄ and replacing v̄1 and v̄2, as

v1 (ξ, η) = εv̄1 (ξ, η̄) , v2 (ξ, η) = εv̄2 (ξ, η̄) .

Like in the Van Dyke theory, µ is developed using a Taylor expansion following the
relation

µ (T ) = µ (T1 + t1 + ε (T2 + t2) + · · ·) = µ (T1 + t1) + ε (T2 + t2)
dµ

dT
(T1 + t1) + · · · ,

i.e.

µ (T ) = µ1 + εµ2 + · · ·
with

µ1 = µ (T1 + t1) µ2 = (T2 + t2)
dµ

dT
(T1 + t1) + · · · .

Thus we have also

hI,1 = hI
(
T1 + t1, TvibI ,1 + tvibI ,1

)
evib,I,1 = evib,I,1

(
TvibI ,1 + tvibI ,1

)
.

Then the following first-order equations are obtained for the defect boundary layer
in thermochemical non-equilibrium:

continuity

∂

∂ξ

[
rjρ1U1 + rj (R1 + ρ1) u1

]
+

∂

∂η

[
rjρ1 (V1 + v1)

]
+ rjR1

∂v1

∂η
= 0;

ξ- momentum

(R1 + ρ1) (U1 + u1)
∂u1

∂ξ
+ [ρ1U1 + (R1 + ρ1) u1]

∂U1

∂ξ
+ (R1 + ρ1) (V1 + v1)

∂u1

∂η

= −∂p1

∂ξ
+

1

Re

∂

∂η

(
µ1

∂u1

∂η

)
;

η- momentum

0 = −∂p1

∂η
;

energy

(R1 + ρ1) (U1 + u1)
∂h1

∂ξ
+ [ρ1U1 + (R1 + ρ1) u1]

∂H1

∂ξ
+ (R1 + ρ1) (V1 + v1)

∂h1

∂η

= u1

∂P1

∂ξ
+ (U1 + u1)

∂p1

∂ξ
+
µ1

Re

(
∂u1

∂η

)2

+
∂

∂η

[
µ1

ReP ′r

∂h1

∂η

]
+
∂

∂η

[
µ1

ReP ′r

((
L′e − 1

)∑
I

hI,1
∂yI,1

∂η
+
(
L′e − 1

) ∑
J=N2 ,O2

(
∂εvib,J,1

∂η
− evib,J,1

∂yJ,1

∂η

))]
;

species conservation

(R1 + ρ1) (U1 + u1)
∂yI,1

∂ξ
+ [ρ1U1 + (R1 + ρ1) u1]

∂YI,1

∂ξ
+ (R1 + ρ1) (V1 + v1)

∂yI,1

∂η

= ω̇I,D,1 +
∂

∂η

[
µ1Le

RePr

∂yI,1

∂η

]
;
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vibration relaxation equations

(R1 + ρ1) (U1 + u1)
∂εvib,J,1

∂ξ
+ [ρ1U1 + (R1 + ρ1) u1]

∂Evib,J,1
∂ξ

+ (R1 + ρ1) (V1 + v1)
∂εvib,J,1

∂η
= Ω̇J,D,1 +

∂

∂η

[
µ1Le

RePr

∂εvib,J,1

∂η

]
.

3.6. Matching conditions

Each expansion must satisfy the boundary conditions corresponding to its own domain
of validity. The upstream conditions are to be applied to the outer expansion and the
wall conditions to the inner one. The missing conditions are obtained by matching
the inner and outer expansions. Thus at the edge of the boundary layer, the matching
is obtained by letting the defect variables, except vD , tend towards zero outside the
boundary layer, so we can write

w −→ wE with w = {u, v, p, ρ, h, T , Tvib,I , YI ,Evib,I},

and so for the defect variables

wD −→ 0 with w = {u, p, ρ, h, T , Tvib,I , YI ,Evib,I},

vD −→ vE (ξ, 0) .

Thus at first order

lim
η̄→∞

u1 = 0, lim
η̄→∞

p1 = 0, lim
η̄→∞

h1 = 0, lim
η̄→∞

t1 = 0,

lim
η̄→∞

yI,1 = 0, lim
η̄→∞

ρ1 = 0, lim
η̄→∞

εvib,j,1 = 0, lim
η̄→∞

tvib,j,1 = 0,

V1 (ξ, 0) = 0.

Using the above condition for the pressure, the first-order η-momentum reduces to

p1 = 0.

So, the pressure in the first-order boundary layer is everywhere equal to the local
inviscid flow pressure, instead of its wall value as in the Van Dyke theory. The
conditions on p, ρ, YI and T are not independant since they are linked through the
state equation. The condition on v is not a boundary condition for the inner expansion
but it gives the wall condition for the outer flow. The conditions at the edge of the
boundary layer ensure, even with a first-order expansion, a smooth merging of the
boundary layer into the inviscid flow whatever the inviscid profiles.

3.7. Wall conditions

The wall conditions for the inner flow are

u = U1 + u1 + ε (U2 + u2) = 0,

v = εv̄1 + ε2v̄2 = 0,

T = T1 + t1 + ε (T2 + t2) = Tw.

If the wall is fully catalytic, the chemical reactions at the wall are assumed to be
catalyzed at a sufficiently high rate so that the mass fractions attain local equilibrium
values. Thus we have

YI = YI,1 + yI,1 = YI,eq.
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If the wall is non-catalytic, no chemical reaction occurs and hence there is no diffusion
of any species at the wall. We obtain

∂YI

∂η
= 0.

If the wall is in thermal equilibrium we have

Tvib,I = Tvib,I,1 + tvib,I,1 = Tw.

If the wall is vibrationally non-catalytic we obtain

∂Tvib,I

∂η
= 0,

i.e.
∂evib,I

∂η
= 0,

Hence at first order the wall conditions reduce to

u1 (ξ, 0) = −U1 (ξ, 0) ,

v1 (ξ, 0) = 0,

t1 (ξ, 0) = Tw − T1 (ξ, 0) ,

yI,1 (ξ, 0) = YI,eq − YI,1 (ξ, 0) (catalytic wall),

∂yI,1

∂η
(ξ, 0) = −∂YI,1

∂η
(ξ, 0) (non-catalytic wall),

εvib,J,1 (ξ, 0) =
(
YJ,1 (ξ, 0) + yJ,1 (ξ, 0)

)
evib,J (Tw)− Evib,J,1 (ξ, 0)

(wall in thermal equilibrium),

∂εvib,J,1

∂η
(ξ, 0)− εvib,J,1 (ξ, 0)

YJ (ξ, 0)

∂YJ

∂η
(ξ, 0) = −∂Evib,J,1

∂η
(ξ, 0) +

Evib,J,1 (ξ, 0)

YJ (ξ, 0)

∂YJ

∂η
(ξ, 0)

(non catalytic vibrationally wall).

4. Numerical procedure
Thanks to the small-perturbations approach, the calculation of the external flow

and of the boundary layer are uncoupled and are performed separately. Thus, in
a first stage we solve the first-order external problem, that is the Euler equations
for a thermochemically reacting flow. For solving those ten coupled equations, a
second-order implicit finite difference method is implemented. This method is based
on a predictor-corrector scheme. A flux splitting technique is used for the Eulerian
fluxes in the implicit operator. After discretization and simplification, the block
tridiagonal matrix is solved with a Gauss Seidel line relaxation method. A more
detailed description of this numerical approach can be found in MacCormack (1985)
and Schall, Burtschell, & Zeitoun (1995). Once we have obtained the inviscid solution,
the parabolic defect boundary layer equations are solved from the stagnation line. The
stagnation line equations are deduced with the help of polynomial expansions with
respect to the curvilinear coordinate ξ, as in Van Dyke (1962). Indeed in the vicinity
of the stagnation point, each variable of the outer and inner zone can be expanded
in powers of ξ, with coefficients that are functions of η for the outer variables, and
of η̄ for the defect variables. For obvious symmetry reasons we retain only the even
powers of ξ in each expansion except for the longitudinal velocity which depends on
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Mach number M∞ 14.98
Velocity (m s−1) U∞ 5612.4
Density (kg m3) ρ∞ 6.8714× 10−4

Pressure (Pa) p∞ 71.34
Temperature (K) T∞ 302
N2 vibrational temperature (K) TvN2∞ 5682.5
O2 vibrational temperature (K) TvO2∞ 3618.2
N2 mass fraction YN2∞ 0.784812
O2 mass fraction YO2∞ 0.002582
NO mass fraction YNO∞ 0.002812
N mass fraction YN∞ 0.003876
O mass fraction YO∞ 0.205918

Reynolds number Re =
ρ∞u∞R0

µref
900

Small parameter ε 0.03333

Table 1. ELECTRE – F4 wind tunnel data at the nozzle exit section

the odd powers of ξ. Then the first-order terms of those expansions are brought in the
defect equations where the ξ derivatives are set to zero around the stagnation point
for symmetry reasons except for the longitudinal velocity. Hence, a set of ordinary
differential equations along the stagnation line is obtained, and solved iteratively after
discretization. Since the first-order defect boundary layer equations are parabolic, fast
space marching methods are used, like for the standard Prandtl equations, as long as
the boundary layer remains attached.

The partial differential set of defect equations is discretized by using a fully implicit
finite difference method for the η-direction and a two-point backward difference
quotient for the ξ derivatives. This finite difference method was chosen because it is
easy to implement, fast, reasonably accurate, and stable. First-order spatial differences
are used for the convective terms, whereas the diffusive terms are discretized by
second-order differences. After discretization each defect equation can be written in
tridiagonal matrix form and solved iteratively by the scalar Thomas algorithm (see for
example Patankar 1980). The merging between the previously computed Euler zone,
and the defect zone is achieved when the discrepancy between the inviscid solution
and the viscous one tends towards zero at the edge of the defect zone.

5. Application to non-equilibrium hypersonic viscous flow around the
ELECTRE model with the F4 free-stream conditions

5.1. Conditions of simulation

To apply the defect approach to hypersonic flows with real gas effects, we have
performed a computational study of the high-enthalpy air flow past the blunt body
ELECTRE defined by the ESA for the recent workshop that was held in ESTEC. The
geometry is essentially a sphere–cone of nose radius R0 = 0.035 m, cone half-angle
α = 4.66◦, and overall length L = 0.4 m.

In this study the wall temperature is assumed to be constant with Tw = 300 K.
The ELECTRE model was selected as a standard model for reference testing in
order to evaluate the high-enthalpy facility’s characteristics, and also to validate CFD
code in the hypervelocity flow regime. This model exhibits sufficient bluntness to
produce dissociation/recombination behind the bow shock in the stagnation region.
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Figure 5. 108× 50 grid for inviscid calculation of the flow field about ELECTRE.

0 400 800 1200

Iterations

10–6

10–4

10–2

100

Res(q)

Figure 6. Time history convergence for L1 norm of ρ residue.

The expansion from the blunt spherical part to the slender conical section might be
rapid enough to display significant non-equilibrium in the expansion fan. It is a model
simple enough to be transferred from tunnel to tunnel and be used to study the tunnel
characteristics as they influence the non-equilibrium chemistry. The characteristics of
the non-equilibrium flow at the nozzle exit of the F4 hypersonic wind tunnel, are given
in table 1 of Schwane, & Muylaert (1994). Those values corresponds to a reduced
total enthalpy Hi∞/RT0 = 260 (T0 = 273.15 K and R = 288 J Kg−1 K−1), and a
reservoir pressure Pi∞ = 430 bar.

5.2. Discussion of the results

The purpose of this application is to compute the flow field about ELECTRE using
the Euler/defect coupling procedure previously described. The inviscid flow solutions
are obtained on a computational domain which contains (108 × 50) grid points (see
figure 5) for good capturing of the gradient flow. The minimum grid spacing along
the stagnation line is ∆η = 1.76 × 10−5 m, and along the body surface it is equal to
∆ξ = 6.12× 10−4 m. The time history convergence of the normalized density residue
obtained for an unsteady computation of the inviscid flow field is plotted on figure
6. The first part of this curve relates to a chemical non-equilibrium flow assumption,
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Figure 7. Inviscid temperature flow field on ELECTRE.

and the thermal non-equilibrium is added to the second part. Convergence is achieved
when the residue has dropped by more than six orders of magnitude. The CPU time
is about 1.10−3 s/it/pt on a Silicon Power Challenge R8000.

5.2.1. Inviscid flow analysis

One can see on figure 7 the inviscid temperature flow field, which has a maximum
of about 11000 K behind the shock wave in the nose region.

Figure 8 demonstrates the freezing of the vibrational relaxation process for N2

molecules in the expansion zone of the flow. This leads to a zone of non-constant
normal gradient in the vicinity of the wall, this zone being advected on the rear part
of the body. Finally, concerning the inviscid flow field, figure 9 shows the atomic
oxygen mass fraction. It is interesting to observe that the Gardiner chemical model
leads to a slight recombination of more than 6% of the atomic oxygen over a short
distance behind the shock wave in the nose region. This phenomenon can be explained
because of the exchange reactions. Indeed, since the free-stream gas flow is essentially
composed of 81% of N2 and 19% of O, the main reactions which occur first behind
the shock wave are the N2 dissociation and the second exchange reaction which leads
to the NO formation. Then NO molecules react with atomic oxygen to produce O2

through the first exchange reaction.

5.2.2. Boundary layer flow analysis

From this inviscid flow solution, the defect method is applied in order to compute
the boundary layer flow on a grid of 144 points along the normal direction η. In
pratice, this grid is defined by the following procedure. One first determines the
maximum height for the boundary layer computational domain. To do this one
considers the distance between the shock wave and the wall on the rear part of the
body. Excluding the Euler grid points where the discontinuity is located, the number of
points for the defect calculation grid is simply determined by a geometric progression
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Figure 8. Inviscid N2 vibrational temperature flow field on ELECTRE.
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Figure 9. Inviscid atomic oxygen mass fraction flow field on ELECTRE.

based on the minimum grid spacing close to the wall and on its geometric ratio. In
this study, these parameters are respectively ∆η = 1.30 × 10−7 m and rη = 1.05. The
matching conditions between the viscous zone and the Euler one (η̄ →∞) are applied
at the edge of the boundary layer computational domain, whose height is iteratively
adjusted as the boundary layer grows. The additional CPU time due to the defect
coupling procedure is about 10% of the Euler computation time.
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Figure 11. Temperature profiles along the stagnation streamline of ELECTRE – catalytic wall
(a) Tvib(0) = Tw , (b) qvib(0) = 0.

A general survey of nonequilibrium processes

Figure 10 shows the mass fraction evolution along the stagnation streamline. The
level of atomic oxygen decreases behind the shock wave as previously mentioned. We
can see strong recombination of atomic species in the boundary layer since we have
assumed here a fully catalytic wall. Figures 11(a) and 11(b) show the evolution of
the three temperatures along the stagnation streamline in the cases where a thermal
equilibrium boundary condition or no vibrational energy exchanges are imposed
respectively at the wall. It is interesting to notice a more pronounced thermal non-
equilibrium in the boundary layer for the second case, since TvN2

is about 8000 K
and TvO2

about 3300 K. Moreover in the outer flow the vibrational non-equilibrium
region of each diatomic species is clearly visible. In the core flow the relaxation zone of
O2 is shorter than that of N2. Figures 12(a) and 12(b) show the temperature profiles
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Figure 13. Temperature profiles in the boundary layer at ξ = 20 cm.

at a distance of 20 cm from the stagnation point for the two extreme boundary
conditions used for the vibrational mode. One can see on these figures the freezing
of the vibrational relaxation process in the expansion zone, and interestingly that
the boundary layer thickness for the vibrational temperatures is larger than for the
transrotational temperature.

Thermochemical wall boundary conditions and heat flux predictions

The influence of the catalycity at the wall on temperature profiles can be seen on
figure 13. In the case of a catalytic wall, the atomic recombination is very important
near the wall while molecule dissociation is very weak. Since the recombination
reactions are essentially exothermic, the temperature profile is higher than in the case
of a non-catalytic wall. Thus the temperature gradient at the wall is greater for a
catalytic wall and consequently the wall heat flux will be increased.

The influence of the wall catalycity on the vibrational temperature profiles can be
seen on figures 14(a) to 14(d). It appears that when the wall is assumed to be in thermal
equilibrium, the chemical catalycity of the wall does not modify the N2 vibrational
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temperature profile (figure 14a), whereas O2 molecules (figure 14b) seem to be more
sensitive since in the case of a catalytic wall the O2 vibrational temperature is lower
than that obtained with a non-catalytic wall. This result demonstrates a transfer from
the vibrational mode of oxygen molecules to the translation/rotation mode during the
recombination of the atomic oxygen, which increases the temperature T in the bound-
ary layer (see figure 13). Consequently, atomic oxygen recombination which occurs in
the boundary layer has lowered the mean vibrational energy of oxygen molecules.

When there is no vibrational energy exchange at the wall, the chemical catalycity of
the wall has more influence on the N2 vibrational temperature (figure 14c), since with
a chemical catalytic wall the mean vibrational energy of N2 molecules is increased.
The same conclusions are true for the O2 molecules only very close to the wall (figure
14d) since in the upper part of the boundary layer we observed an inversion of the be-
haviour. Figure 15 shows the computational wall heat transfer distribution along the
ELECTRE model, for either a fully catalytic or non-catalytic assumption with either
a full accommodation of the vibrational mode of excited molecules at the wall, or no
vibrational energy exchanges at the wall. The catalytic effect produces discrepancies
in the heat flux due to the diffusive contribution

∑
I hIQ

D
vib,I . This contribution is zero
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for the ‘non-catalytic’ model, that gives the minimum heat flux. The recombination
of atomic species via exothermal reactions liberates energy that is carried away by
the surface. The ‘fully catalytic’ heat flux is the largest (30% higher than the ‘non-
catalytic’) according to the maximum recombination of oxygen close to the wall (the
atomic nitrogen mass fraction is negligible). The influence of the boundary condition
used for the vibrational energy on the total heat flux is clearly visible. For a catalytic
wall the assumption of a full accomodation of the vibrational mode of the N2 and O2

molecules at the wall induces a nose heat flux 13 % higher than for a wall without
vibrational energy exchanges. For a non-catalytic wall the deviation in the nose heat
flux between these two extreme conditions is 10%. These results confirm the previous
one obtained by Tirsky (1993) concerning wall heat flux predictions for the Buran
shuttle. One can observe on figure 15 that a better agreement with the experiment is
achieved when the simulation takes into account a fully catalytic wall with no vibra-
tional energy exchange at the wall. This trend is particularly true in the compression
zone. Indeed, it seems that for a better comparison to experiment and for accurate
predictions of the heat flux, it is required to model the partial catalycity of the wall
with finite-rate catalytic boundary conditions as explained by Scott (1984), since on
the rear part of ELECTRE, the experimental measurements are located between the
two extremes of catalytic or non-catalytic behaviours. Although they strongly modify
the heat flux prediction, those various boundary conditions do not influence the skin
friction plotted on figure 16. In the compression zone the influence of the normal
gradients is clearly evident, since with the defect approach a noticeable increase is ob-
tained. The classical boundary layer theory overestimates the skin friction on the rear
part of the body, since past the compression zone the longitudinal velocity gradient at
the wall is higher than using the defect approach. The reason of such a behaviour can
be found in the overestimation of the inviscid longitudinal velocity at the wall given by
all the Euler solvers for reacting flows as has been shown in Désidéri & Salvetti (1993).

5.2.3. Comparison with a Navier–Stokes solution

In order to validate the coupled Euler/defect approach, a comparison with the
full Navier–Stokes one has been carried out at a distance equal to 11 cm along
the body. The Navier–Stokes code is an extension of the Euler one by the addition
of the viscous terms in the equations, and a detailed description can be found in
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MacCormack (1985) and Schall et al. (1995). This point is of importance since to
minimize the discrepancies that can occur between the Euler and Navier–Stokes
solvers, in the computation of the non-viscous region of the shock layer, one must use
a similar numerical approach, and also the same physico-chemical models. The wall is
assumed to be fully catalytic and there is no vibrational energy exchange at the wall.
The CPU time for obtaining the steady Navier–Stokes solution is about one order of
magnitude greater than the Euler one, and this easily explains the interest of the defect
approach. An isocontour plot of the vibrational temperature of oxygen molecules is
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shown on figure 17. The upper part represents the Euler/defect boundary layer
solution, while the Navier–Stokes one is shown in the lower part. The two solutions
are very similar. Some profiles at the stagnation point are displayed on figures 18(a)
and 18(b) respectively for the temperature and the atomic oxygen mass fraction.
The solution is plotted in the full computation domain in order to see the relative
position of the viscous zone in the shock layer. The defect solution is very close to the
Navier–Stokes one. The thermal boundary layer region occupies about 15% of the
shock layer. Moreover, since we have used a very similar mesh distribution near the
shock position, the result is that the shock stand-off positions given by the two solver
are much the same. It should be noted that the inviscid flow gradients at the wall
are non-negligible. For example, concerning the inviscid temperature T , the gradient
decreases between the wall and the boundary layer edge. So, even with a second-order
expansion, the Van Dyke method could not give a good matching, since it considers
only the wall value of the gradient. In such a case, the nose heat flux would have been
overestimated. The comparison is also done in the expansion zone of the flow at 11
cm from the nose. The longitudinal velocity boundary layer profile is plotted on figure
19(a). Here again the defect and Navier–Stokes solutions are in a good agreement.
Because of the conservation of the total enthalpy in the absence of viscous effects,
the positive velocity gradient at the wall for the inviscid solution induces a negative
enthalpy gradient at the wall for the inviscid enthalpy profile (see figure 19b). As a
consequence, the wall heat flux given by the defect approach is lower than the Prandtl
prediction at this location as can be seen on figure 20, and the defect/Navier–Stokes
comparison (figure 19b) exhibits some differences for the enthalpy profile. Finally the
molecular oxygen mass fraction profile is plotted on figure 19(c), and confirms that
the defect approach greatly improves the prediction of the flow field compared to the
classical boundary layer theory the full Navier–Stokes solution.

The wall heat flux distributions obtained by these differents numerical approaches,
to which we add a PNS solution given by Hachemin & Vérant (1995), are plotted
on figure 20. Compared to the classical approach referred to as Prandtl, it is clear
that the defect theory extended to real gas flow greatly improves the wall heat flux
prediction. Moreover, very near the nose, the defect solution seems closer to the PNS
one than the Navier–Stokes solution, which predict a nose heat flux slightly higher.
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The difference does not exceed 6%. It is interesting to observe the convergence of the
three numerical solutions in the compression zone along the ELECTRE body, between
2 cm and 4 cm. The PNS method recasts exactly the full Navier–Stokes one on the
rear part, where the two methods overestimate slightly the wall heat flux compared
to the experimental data, whereas the defect prediction is in a better agreement
with experience. Those differences, even though they are not so important, may be
explained through the numerical diffusive nature of the Navier–Stokes and PNS
solvers, in which artificial viscosity terms are used through an adaptative dissipation
technique for preventing oscillations of the numerical scheme, as it is detailed in
Jameson, Schmidt, & Turkel (1981). In addition, even though the prediction given by
the defect approach is closer to the experimental data, any comparison to experimental
measurements must be done carefully in view of uncertainties concerning first the
thermochemical wall boundary conditions, and secondly the effective total enthalpy
in the chamber of the F4 facility during the run as shown in Bellucci et al. (1995).

6. Conclusions
The defect approach has been extended to derive boundary layer equations from

the Navier–Stokes equations for laminar viscous flows in thermochemical non-
equilibrium. Together with matched asymptotic expansions methodology, it ensures
a correct matching of the inviscid flow with the first-order boundary layer solution.
The defect equations are solved for a cost similar to the standard boundary layer
ones, since the problem is again parabolic. The computational prediction of the flow
around the ELECTRE model tested in the F4 high-enthalpy wind tunnel facility has
been done and catalytic effects have shown as well as the vibrational behaviour at
the wall. Given identical physical, chemical and vibrational models, the comparative
study between the defect boundary layer approach and the full Navier–Stokes one
has showed that our method can provide a quite comparable flow solution with an
important reduction of computational cost. Indeed, one can affirm, in order to give
a very crude estimate, that the computational cost diminishes about in the ratio
of the CPU time required between an Euler solver to a full Navier–Stokes one.
Wall heat flux predictions for various boundary conditions have shown that the best
agreement with the experimental data is achieved for a fully catalytic wall assuming
that there is no vibrational energy exchanges at the wall. The defect boundary layer
approach extended to real gas flows is a very powerful tool which will allow us to test
more easily the influence on the wall heat flux of different wall boundary conditions,
multicomponent diffusion models, or non-equilibrium vibrational models taking into
account the various couplings between the chemistry and the vibrational energy.

The authors would like to thank the “Centre de Calcul Haute Performance de
l’IRPHE Marseille” for allowing them access to the Powerchallenge Silicon R8000
computer.
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